Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.262
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612716

RESUMO

Lymphedema is a chronic and progressive disease of the lymphatic system characterized by inflammation, increased adipose deposition, and tissue fibrosis. Despite early hypotheses identifying lymphedema as a disease of mechanical lymphatic disruption alone, the progressive inflammatory nature underlying this condition is now well-established. In this review, we provide an overview of the various inflammatory mechanisms that characterize lymphedema development and progression. These mechanisms contribute to the acute and chronic phases of lymphedema, which manifest clinically as inflammation, fibrosis, and adiposity. Furthermore, we highlight the interplay between current therapeutic modalities and the underlying inflammatory microenvironment, as well as opportunities for future therapeutic development.


Assuntos
Linfedema , Humanos , Linfedema/etiologia , Linfedema/terapia , Inflamação/terapia , Sistema Linfático , Adiposidade , Obesidade , Fibrose
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612804

RESUMO

Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Humanos , Doenças Neuroinflamatórias , Inflamação/terapia , Sistema Nervoso Central
3.
Medicine (Baltimore) ; 103(12): e37493, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518039

RESUMO

BACKGROUND: Diabetes Mellitus (DM) is a metabolic disease with a high morbidity and mortality and increasing in prevalence all over the world. Due to the hypoxic, ischemic, inflammatory, and infective environment in DM, diabetic foot ulcers have been treated with medico-surgical interventions and adjuvant hyperbaric oxygen Therapy (HBOT). The purpose of this study was to evaluate the effects of HBOT on hematological indices and biochemical parameters in patients with diabetic foot. METHODS: The study group was formed from the file records of 103 male patients who applied to Yunus Emre State Hospital HBOT Center between September 1, 2016 and December 31, 2020, and were treated HBOT with a multidisciplinary approach. RESULTS: There were negative low correlations between number of HBOT sessions and Mean Corpuscular Hemoglobin (MCH) (P = .037, r = -0.207) and Blood Urea Nitrogen (BUN) (P = .037, r = -0.222). White Blood Cell Count (WBC), Neutrophils (NEU), Monocytes (MON), Platelet Count (PLT), and Plateletcrit (PTC) parameters were found to be decreased, and an increase in lymphocytes (LYM), Eosinophils (EOS), Mean Corpuscular Hemoglobin Concentration (MCHC), and Red Cell Distribution Width (RDW) parameters were detected after the treatments (P < .05). Again, after the treatment, glucose (Glu), C-Reactive Protein (CRP), direct bilirubin, and total protein (TP) levels were decreased, and uric acid (UA) levels increased (P < .05). CONCLUSION: HBOT improved hematological indices in patients and had a beneficial effect on biochemical parameters, particularly Glu and CRP levels. Adjuvant HBOT alleviates diabetic inflammation and has a beneficial effect on diabetic patient treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Oxigenoterapia Hiperbárica , Humanos , Masculino , Pé Diabético/terapia , Inflamação/terapia , Isquemia/terapia , Diabetes Mellitus/terapia
4.
Brain Behav Immun ; 118: 300-309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467380

RESUMO

BACKGROUND: Social anxiety disorder (SAD) places a profound burden on public health and individual wellbeing. Systemic inflammation may be important to the onset and maintenance of SAD, and anti-inflammatory treatments have shown promise in relieving symptoms of SAD. In the present study, we conducted secondary analyses on data from a randomized clinical trial to determine whether C-reactive protein (CRP) concentrations and social anxiety symptoms decreased over the course of virtual reality exposure therapy, and whether changes in social anxiety symptoms as a function of treatment varied as a function of CRP. METHOD: Adult participants (N = 78) with a diagnosis of SAD (59 % female) were randomized to receive exposure therapy alone, or exposure therapy supplemented with scopolamine. Social anxiety symptoms, salivary CRP, and subjective units of distress were measured across three exposure therapy sessions, at a post-treatment extinction retest, and at a 1-month follow-up. RESULTS: CRP decreased over the course of treatment, b = -0.03 (SE = 0.01), p =.02 95 %CI [-0.06, -0.004], as did all social anxiety symptom domains and subjective distress. Higher CRP was associated with greater decreases from pre-treatment to 1-month follow-up in fear, b = -0.45 (SE = 0.15), p =.004 95 %CI [-0.74, -0.15], and avoidance, b = -0.62 (SE = 0.19), p =.002 95 %CI [-1.01, -0.23], and in-session subjective distress from pre-treatment to post-treatment, b = -0.42 (SE = 0.21), p =.05 95 %CI [-0.83, -0.001]. However, declines in CRP were not correlated with declines in fear, r = -0.07, p =.61, or avoidance, r = -0.10, p =.49, within-persons. CONCLUSIONS: Virtual reality exposure therapy may be associated with an improvement in systemic inflammation in patients with severe SAD. Pre-treatment CRP may also be of value in predicting which patients stand to benefit the most from this treatment.


Assuntos
Fobia Social , Terapia de Exposição à Realidade Virtual , Adulto , Humanos , Feminino , Masculino , Fobia Social/terapia , Proteína C-Reativa , Medo , Inflamação/terapia , Ansiedade/terapia
5.
J Tradit Chin Med ; 44(2): 353-361, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504541

RESUMO

OBJECTIVE: To test the hypothesis that moxibustion may inhibit rheumatoid arthritis (RA) synovial inflammation by regulating the expression of macrophage migration inhibitory factor (MIF)/glucocorticoids (GCs). METHODS: Fifty male Sprague-Dawley rats were randomly divided into five groups (n = 10 each): blank Control (CON) group, RA Model (RA) group, Moxibustion (MOX) group, MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) group, and Moxibustion + MIF inhibitor ISO-1 (MOX + ISO-1) group. Rats in the ISO-1 group and ISO-1 + MOX group were intraperitoneally injected with the inhibitor ISO-1. The rats in the RA group, ISO-1 group, MOX group, and ISO-1 + MOX group were injected with Freund's complete adjuvant (FCA) in the right hind footpad to establish an experimental RA rat model. In the MOX group and MOX + ISO-1 group, rats were treated with Moxa. The thickness of the footpads of the rats in each group was measured at three-time points before, after modeling and after moxibustion treatment. The contents of serum MIF, corticosterone (CORT), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected by enzyme-linked immunosorbent assay; and the contents of synovial MIF were detected by Western blot. Hematoxylin-eosin (HE) staining method was used to observe the pathological changes of synovial tissue under a section light microscope, and pathological scoring was performed according to the grading standard of the degree of synovial tissue disease. RESULTS: Moxibustion was found to reduce the level of MIF and alleviate inflammation in RA rats in this study. In addition, after inhibiting the expression of MIF, the level of CORT increased, and the level of TNF-α decreased. Treating RA rats with inhibited MIF by moxibustion, the level of CORT was almost unchanged, but the level of TNF-α further decreased. The correlation analysis data suggested that MIF was positively related to the expression of TNF-α and negatively correlated with the expression of CORT. CONCLUSION: Reducing MIF to increase CORT and decrease TNF-α by moxibustion treatment in RA. MIF may be a factor for moxibustion to regulate the expression of CORT, but the expression of TNF-α is due to the incomplete regulation of the MIF. This study added to the body of evidence pointing to moxibustion's anti-inflammatory mechanism in the treatment of RA.


Assuntos
Artrite Reumatoide , Fatores Inibidores da Migração de Macrófagos , Moxibustão , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Glucocorticoides , Fator de Necrose Tumoral alfa/genética , Fatores Inibidores da Migração de Macrófagos/genética , Artrite Reumatoide/terapia , Artrite Reumatoide/metabolismo , Inflamação/terapia
6.
Front Immunol ; 15: 1364401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545101

RESUMO

The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Vesículas Extracelulares/fisiologia , Inflamação/terapia , Células-Tronco Mesenquimais/fisiologia
7.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466420

RESUMO

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Pulmão/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Inflamação/terapia , Inflamação/metabolismo , Organoides/metabolismo
8.
Front Immunol ; 15: 1334828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348031

RESUMO

Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Humanos , Linfócitos T Reguladores , Neuralgia/etiologia , Neuralgia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Inflamação/terapia , Citocinas
9.
Biotechnol J ; 19(2): e2300174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403399

RESUMO

Mesenchymal stem cells (MSCs) and their produced exosomes have demonstrated inherent capabilities of inflammation-guided targeting and inflammatory modulation, inspiring their potential applications as biologic agents for inflammatory treatments. However, the clinical applications of stem cell therapies are currently restricted by several challenges, and one of them is the mass production of stem cells to satisfy the therapeutic demands in the clinical bench. Herein, a production of human amnion-derived MSCs (hMSCs) at a scale of over 1 × 109 cells per batch was reported using a three-dimensional (3D) culture technology based on microcarriers coupled with a spinner bioreactor system. The present study revealed that this large-scale production technology improved the inflammation-guided migration and the inflammatory suppression of hMSCs, without altering their major properties as stem cells. Moreover, these large-scale produced hMSCs showed an efficient treatment against the lipopolysaccharide (LPS)-induced lung inflammation in mice models. Notably, exosomes collected from these large-scale produced hMSCs were observed to inherit the efficient inflammatory suppression capability of hMSCs. The present study showed that 3D culture technology using microcarriers coupled with a spinner bioreactor system can be a promising strategy for the large-scale expansion of hMSCs with improved anti-inflammation capability, as well as their secreted exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Pneumonia , Humanos , Animais , Camundongos , Células-Tronco , Pneumonia/terapia , Inflamação/terapia
10.
Int J Nanomedicine ; 19: 1597-1627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406601

RESUMO

The development of numerous diseases is significantly influenced by inflammation. Macrophage-derived exosomes (M-Exos) play a role in controlling inflammatory reactions in various conditions, including chronic inflammatory pain, hypertension, and diabetes. However, the specific targets and roles of M-Exos in regulating inflammation in diseases remain largely unknown. This review summarizes current knowledge on M-Exos biogenesis and provides updated information on M-Exos' biological function in inflammation modulation. Furthermore, this review highlights the functionalization and engineering strategies of M-Exos, while providing an overview of cutting-edge approaches to engineering M-Exos and advancements in their application as therapeutics for inflammation modulation. Finally, multiple engineering strategies and mechanisms are presented in this review along with their perspectives and challenges, and the potential contribution that M-Exos may have in diseases through the modulation of inflammation is discussed.


Assuntos
Exossomos , MicroRNAs , Humanos , Macrófagos , Inflamação/terapia
11.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396820

RESUMO

The members of the Flaviviridae family are becoming an emerging threat for public health, causing an increasing number of infections each year and requiring effective treatment. The consequences of these infections can be severe and include liver inflammation with subsequent carcinogenesis, endothelial damage with hemorrhage, neuroinflammation, and, in some cases, death. The mechanisms of Flaviviridae pathogenesis are being actively investigated, but there are still many gaps in their understanding. Extracellular vesicles may play important roles in these mechanisms, and, therefore, this topic deserves detailed research. Recent data have revealed the involvement of extracellular vesicles in steps of Flaviviridae pathogenesis such as transmission, immune evasion, and inflammation, which is critical for disease establishment. This review covers recent papers on the roles of extracellular vesicles in the pathogenesis of Flaviviridae and includes examples of clinical applications of the accumulated data.


Assuntos
Vesículas Extracelulares , Infecções por Flaviviridae , Flaviviridae , Humanos , Infecções por Flaviviridae/tratamento farmacológico , Evasão da Resposta Imune , Inflamação/terapia
12.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397048

RESUMO

Negative Pressure Wound Therapy (NPWT) is a commonly employed clinical strategy for wound healing, yet its early-stage mechanisms remain poorly understood. To address this knowledge gap and overcome the limitations of human trials, we establish an NPWT C57BL/6JNarl mouse model to investigate the molecular mechanisms involved in NPWT. In this study, we investigate the intricate molecular mechanisms through which NPWT expedites wound healing. Our focus is on NPWT's modulation of inflammatory immune responses and the concurrent orchestration of multiple signal transduction pathways, resulting in shortened coagulation time and reduced inflammation. Notably, we observe a significant rise in dickkopf-related protein 1 (DKK-1) concentration during NPWT, promoting the differentiation of Hair Follicle Stem Cells (HFSCs) into epidermal cells, expediting wound closure. Under negative pressure, macrophages express and release DKK-1 cytokines, crucial for stimulating HFSC differentiation, as validated in animal experiments and in vitro studies. Our findings illuminate the inflammatory dynamics under NPWT, revealing potential signal transduction pathways. The proposed framework, involving early hemostasis, balanced inflammation, and macrophage-mediated DKK-1 induction, provides a novel perspective on enhancing wound healing during NPWT. Furthermore, these insights lay the groundwork for future pharmacological advancements in managing extensive wounds, opening avenues for targeted therapeutic interventions in wound care.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Humanos , Camundongos , Animais , Tratamento de Ferimentos com Pressão Negativa/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cicatrização , Inflamação/terapia
13.
Zhen Ci Yan Jiu ; 49(2): 103-109, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38413030

RESUMO

OBJECTIVES: To observe the analgesic effects of different levels and intensities of electrical stimulation on the local acupoints in the pain source area and their impact on wide dynamic range (WDR) neurons in the spinal dorsal horn, in order to provide a basis for selecting appropriate parameters for electroacupuncture (EA) stimulation. METHODS: Wistar rats were used in 3 parts of the experiment. Complete Freund's adjuvant was used to establish a model of inflammation-induced pain in the gastrocnemius muscle. After modeling, 6 rats were randomly selected for multi-channel extracellular electrophysiological recording of the electrical activity of WDR neurons, to determine the threshold for activating the A-component (Ta) and the C-component (Tc), which were used as the intervention intensities for skin transcutaneous electrical acupoint stimulation (TEAS) or EA. Thirty-six rats were randomly divided into normal , model , TEAS-Ta , TEAS-Tc, EA-Ta , and EA-Tc groups, with 6 rats in each group. In the pain source area , Ta or Tc intensity of TEAS or EA intervention at"Chengshan"(BL57) was performed for 30 min each time, once a day, for 3 consecutive days. A small animal pressure pain measurement instrument was used to measure the mechanical pressure pain threshold of the gastrocnemius muscle in rats, and the Von Frey filament was used to measure the mechanical pain threshold of the footpad. Thirteen rats were randomly selected to observe the immediate responsiveness of WDR neurons to Ta/Tc intensity of EA or TEAS in BL57. RESULTS: The thresholds of TEAS to activate WDR neuron A-component or C-component were (2.43±0.57) mA and (7.00±1.34) mA, respectively, while the thresholds for EA to activate muscle WDR neuron A-component or C-component were (0.72±0.34) mA and (1.58±0.35) mA, respectively. After injection of CFA into the gastrocnemius muscle, compared with the normal group both the mechanical pressure pain threshold of the gastrocnemius muscle and the mechanical pain threshold of the footpad of rats in the model group were significantly decreased (P<0.001). After TEAS-Ta, TEAS-Tc or EA-Ta intervention in the BL57, both the mechanical pressure pain threshold of the gastrocnemius muscle and the mechanical pain threshold of the footpad were significantly higher than those in the model group (P<0.05, P<0.001). Compared with the normal group, the electrical threshold for evoking WDR neuron C-component discharge was significantly decreased (P<0.001) in the model group, while increased after TEAS-Ta, TEAS-Tc, or EA-Ta intervention (P<0.01) compared with the model group. The evoked discharge frequency of muscle WDR neurons decreased significantly after immediate intervention with TEAS-Ta, TEAS-Tc, or EA-Ta (P<0.01, P<0.05). EA-Tc had no significant improvement on the evoked electrical activity of WDR neurons or pain behavior. CONCLUSIONS: TEAS-Ta, TEAS-Tc, or EA-Ta can all alleviate the local and footpad mechanical pain in rats with muscle inflammation and inhibit the responsiveness of WDR neurons, indicating that different intensities are required for analgesic effects at different levels of acupoints in the pain source area.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Ratos , Animais , Ratos Sprague-Dawley , Ratos Wistar , Dor , Neurônios , Inflamação/terapia , Analgésicos/efeitos adversos , Medula Espinal
14.
J Acupunct Meridian Stud ; 17(1): 28-37, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38409812

RESUMO

Background: : Warm acupuncture (WA) has analgesic and anti-inflammatory effects. However, the underlying mechanism of these effects remain unclear. Objectives: : To explore the analgesic and anti-inflammatory effects of WA and the potential underlying mechanism in male Sprague-Dawley rats with non-compressive lumbar disk herniation (LDH) caused by autologous nucleus pulposus (NP) transplantation. Methods: : We used low-frequency (2 Hz) electrical stimulation and WA (40℃) to treat GB30 and BL54 acupoints in rats for 30 mins per day. We monitored the paw withdrawal threshold of rats during the experiment and measured serum cytokine levels using commercial kits. Dorsal root ganglion (DRG) tissue pathology was analyzed via H&E staining. We used qRT-PCR to measure the mRNA expression levels of IL-1ß, IL-6, and TNF-α genes in DRG. Western blot was used to analyze the expression levels of IL-1ß, IL-6, TNFα, P-p38MAPK, p38MAPK, P-IκBα, IκB α, and NF-κB p65 proteins. Results: : WA treatment significantly increased the pain threshold of rats, reduced serum IL-6, PEG2, NO, SP, NP-Y, and MMP-3 levels, and effected histopathological improvements in the DRG in rats. Moreover, WA treatment significantly downregulated the expression levels of inflammation-associated genes (Il-1ß, Il-6, and Tnf-α) and proteins (IL-1ß, IL-6, TNF-α, P-p38MAPK, P-IκBα, and NF-κB p65) in the DRG of non-compressive LDH rats. Conclusion: : WA can alleviate pain and inhibit inflammatory response in rats with non-compressive LDH caused by autologous NP transplantation, and these effects are likely associated with the inhibition of the p38MAPK/NF-κB pathway.


Assuntos
Terapia por Acupuntura , Deslocamento do Disco Intervertebral , Núcleo Pulposo , Ratos , Masculino , Animais , Deslocamento do Disco Intervertebral/terapia , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Núcleo Pulposo/metabolismo , Dor , Inflamação/terapia , Inflamação/complicações , Anti-Inflamatórios/farmacologia , Analgésicos
15.
Am J Sports Med ; 52(3): 710-720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353544

RESUMO

BACKGROUND: Extracorporeal shock wave therapy (ESWT) promotes tissue healing by modulating inflammation, which has implications for meniscal tear healing in the avascular zone. PURPOSE: To evaluate the effects of a single dose of radial ESWT on the healing process and inflammation of the meniscus and knee joints after meniscal tears in the avascular zone. STUDY DESIGN: Controlled laboratory study. METHODS: Avascular tears were induced in the medial meniscus (MM) of 72 Sprague-Dawley rats. One week postoperatively, the rats received a single session of radial ESWT with a Power+ handpiece (ESWT group; n = 36) or with a fake handpiece (sham-ESWT group; n = 36). The rats were then euthanized at 2, 4, or 8 weeks postoperatively. The MMs were harvested for analysis of healing (hematoxylin-eosin, safranin O-Fast Green, and collagen type 2 staining) and inflammation (interleukin [IL]-1ß and IL-6 staining). Lateral menisci and synovia were obtained to evaluate knee joint inflammation (enzyme-linked immunosorbent assay of IL-1ß and IL-6). Cartilage degeneration was assessed in the femurs and tibial plateaus using safranin O-Fast Green staining. RESULTS: The ESWT group showed significantly better meniscal healing scores than the sham-ESWT group at 4 (P = .0066) and 8 (P = .0050) weeks postoperatively. The IL-1ß level was significantly higher in the sham-ESWT group than in the ESWT group at 2 (MM: P = .0009; knee joint: P = .0160) and 8 (MM: P = .0399; knee joint: P = .0001) weeks. The IL-6 level was significantly lower in the sham-ESWT group than in the ESWT group at 2 (knee joint: P = .0184) and 4 (knee joint: P = .0247) weeks but higher at 8 weeks (MM: P = .0169; knee joint: P = .0038). The sham group had significantly higher osteoarthritis scores than the ESWT group at 4 (tibial plateau: P = .0157) and 8 (femur: P = .0048; tibial plateau: P = .0359) weeks. CONCLUSION: A single dose of radial ESWT promoted meniscal tear healing in the avascular zone, modulated inflammatory factors in the menisci and knee joints in rats, and alleviated cartilage degeneration. CLINICAL RELEVANCE: Radial ESWT can be considered a potential option for improving meniscal tear healing in the avascular zone because of its ability to modulate inflammation.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Traumatismos do Joelho , Lacerações , Osteoartrite , Corantes de Rosanilina , Animais , Ratos , Ratos Sprague-Dawley , Interleucina-6 , Inflamação/terapia
16.
CNS Neurosci Ther ; 30(2): e14614, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358062

RESUMO

BACKGROUND: Transcutaneous auricular vagus nerve stimulation (taVNS) is a crucial neuromodulation therapy for depression, yet its molecular mechanism remains unclear. Here, we aim to unveil the underlying mechanisms of antidepression by systematically evaluating the change of gene expression in different brain regions (i.e., hippocampus, anterior cingulate cortex, and medial prefrontal cortex). METHODS: The adolescent depression rat model was established by chronic unpredictable mild stress (CUMS), followed by the taVNS treatment for 3 weeks. The open field test (OFT), forced swimming test (FST), elevated plus maze test (EPM), and new object recognition (NOR) test were used to evaluate depressive- and anxiety-like behaviors. Gene expression analysis of three brain regions was conducted by RNA sequencing (RNA-seq) and further bioinformatics methods. RESULTS: The depressive- and anxiety-like behaviors in CUMS-exposed rats were manifested by decreased spontaneous locomotor activity of OFT, increased immobility time of FST, increased entries and time in the closed arms of EPM, and decreased new object index of NOR. Furthermore, CUMS exposure also led to alterations in gene expression within the hippocampus (HIP), anterior cingulate cortex (ACC), and medial prefrontal cortex (mPFC), suggesting a potential link between adolescent stress and pathological changes within these brain regions. TaVNS could significantly ameliorate depressive- and anxiety-like behaviors. Its effects on these three brain regions were found related to regulation of the metabolism, and there were some brain region-specific findings. Compared with ACC and mPFC, taVNS has a more concrete effect on HIP by regulating the inflammation response and glycolysis. CONCLUSION: taVNS is capable of ameliorating adolescent depressive- and anxiety-like behaviors by regulating plenty of genes in the three brain regions. Suppressed level of inflammatory response and enhanced glycolysis manifests the dominant role of taVNS in HIP, which provides a theoretical foundation and data support for the molecular mechanism of antidepression by taVNS.


Assuntos
Estimulação do Nervo Vago , Ratos , Animais , Encéfalo , Hipocampo/metabolismo , Ansiedade/terapia , Nervo Vago , Inflamação/terapia , Inflamação/metabolismo
17.
Redox Biol ; 71: 103101, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408409

RESUMO

Physical activity has been considered an important non-medication intervention in preserving mnemonic processes during aging. However, how aerobic exercise promotes such benefits for human health remains unclear. In this study, we aimed to explore the neuroprotective and anti-inflammatory effects of aerobic exercise against lipopolysaccharide (LPS)-induced amnesic C57BL/6J mice and BV-2 microglial cell models. In the in vivo experiment, the aerobic exercise training groups were allowed to run on a motorized treadmill 5 days/week for 4 weeks at a speed of 10 rpm/min, with LPS (0.1 mg/kg) intraperitoneally injected once a week for 4 weeks. We found that aerobic exercise ameliorated memory impairment and cognitive deficits among the amnesic mice. Correspondingly, aerobic exercise significantly increased the protein expressions of FNDC5, which activates target neuroprotective markers BDNF and CREB, and antioxidant markers Nrf2/HO-1, leading to inhibiting microglial-mediated neuroinflammation and reduced the expression of BACE-1 in the hippocampus and cerebral cortex of amnesic mice. We estimated that aerobic exercise inhibited neuroinflammation in part through the action of FNDC5/irisin on microglial cells. Therefore, we explored the anti-inflammatory effects of irisin on LPS-stimulated BV-2 microglial cells. In the in vitro experiment, irisin treatment blocked NF-κB/MAPK/IRF3 signaling activation concomitantly with the significantly lowered levels of the LPS-induced iNOS and COX-2 elevations and promotes the Nrf2/HO-1 expression in the LPS-stimulated BV-2 microglial cells. Together, our findings suggest that aerobic exercise can improve the spatial learning ability and cognitive functions of LPS-treated mice by inhibiting microglia-mediated neuroinflammation through its effect on the expression of BDNF/FNDC5/irisin.


Assuntos
Disfunção Cognitiva , Lipopolissacarídeos , Camundongos , Humanos , Animais , Lipopolissacarídeos/efeitos adversos , Doenças Neuroinflamatórias , Fibronectinas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/terapia , Disfunção Cognitiva/tratamento farmacológico , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Inflamação/terapia , Inflamação/tratamento farmacológico
18.
Stem Cell Res Ther ; 15(1): 44, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360740

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are attracting attention as a promising cell-based therapy for the treatment of liver fibrosis or cirrhosis. However, the strategies and potential mechanisms of MSCs therapy need further investigation. The CXCL12/CXCR4/CXCR7 chemokine axis is well known to regulate cell migration and is involved in the regulation of liver fibrosis. This study aims to treat MSCs with a CXCR7-specific agonist to evaluate its therapeutic effects on hepatic fibrosis and potential mechanisms. METHODS: TC14012, a potent agonist of CXCR7, has been used to pretreat human umbilical cord-derived MSCs (UC-MSCs) and assess its effect on proliferation, apoptosis, migration, immunoregulation, and gene regulatory network. Then, CCl4-induced liver fibrosis mice models were used to evaluate the therapeutic effect and mechanism of TC14012-treated UC-MSCs for treating hepatic fibrosis. RESULTS: TC14012 increased CXCR7 expression in UC-MSCs. Notably, co-culture of liver sinusoidal endothelial cells (LSEC) with TC14012-pretreated UC-MSCs increased CXCR7 expression in LSEC. Additionally, TC14012 promoted cell migration and mediated the immunoregulation of UC-MSCs. Compared to UC-MSCs without TC14012 pretreatment, UC-MSCs treated with TC14012 ameliorated live fibrosis by restoring CXCR7 expression, reducing collagen fibril accumulation, inhibiting hepatic stellate cells activation, and attenuating the inflammatory response. CONCLUSION: This study suggests that TC14012 pretreatment can enhance the therapeutic effects of UC-MSCs on liver fibrosis, mainly by promoting the migration and immunoregulation of MSCs.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Oligopeptídeos , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Fibrose , Inflamação/terapia , Inflamação/metabolismo , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Colágeno/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
19.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338832

RESUMO

Nonspecific orbital inflammation (NSOI), colloquially known as orbital pseudotumor, sometimes presents a diagnostic and therapeutic challenge in ophthalmology. This review aims to dissect NSOI through a molecular lens, offering a comprehensive overview of its pathogenesis, clinical presentation, diagnostic methods, and management strategies. The article delves into the underpinnings of NSOI, examining immunological and environmental factors alongside intricate molecular mechanisms involving signaling pathways, cytokines, and mediators. Special emphasis is placed on emerging molecular discoveries and approaches, highlighting the significance of understanding molecular mechanisms in NSOI for the development of novel diagnostic and therapeutic tools. Various diagnostic modalities are scrutinized for their utility and limitations. Therapeutic interventions encompass medical treatments with corticosteroids and immunomodulatory agents, all discussed in light of current molecular understanding. More importantly, this review offers a novel molecular perspective on NSOI, dissecting its pathogenesis and management with an emphasis on the latest molecular discoveries. It introduces an integrated approach combining advanced molecular diagnostics with current clinical assessments and explores emerging targeted therapies. By synthesizing these facets, the review aims to inform clinicians and researchers alike, paving the way for molecularly informed, precision-based strategies for managing NSOI.


Assuntos
Cristalino , Oftalmologia , Pseudotumor Orbitário , Humanos , Inflamação/diagnóstico , Inflamação/terapia , Pseudotumor Orbitário/diagnóstico , Pseudotumor Orbitário/patologia , Cristalino/patologia , Citocinas
20.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337648

RESUMO

Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis. The rat model of CD-like colitis was established by an intracolonic instillation of TNBS at 65 mg/kg in 250 µL of 40% ethanol. Sham control rats were instilled with saline. Rats were fed ad libitum with either regular pellet food or EEN treatment with a clear liquid diet (Ensure). Rats were euthanized at 7 days. Fecal pellets were collected from the distal colon for 16S rRNA sequencing analysis of gut microbiota. In addition, colon tissues were taken for histological and molecular analyses in all the groups of rats. EEN administration to TNBS-induced CD rats significantly improved the body weight change, inflammation scores, and disease activity index. The mRNA expression of IL-17A and interferon-γ was significantly increased in the colonic tissue in TNBS rats when fed with regular food. However, EEN treatment significantly attenuated the increase in IL-17A and interferon-γ in TNBS rats. Our 16S rRNA sequencing analysis found that gut microbiota diversity and compositions were significantly altered in TNBS rats, compared to controls. However, EEN treatment improved alpha diversity and increased certain beneficial bacteria such as Lactobacillus and Dubosiella and decreased bacteria such as Bacteroides and Enterorhabdus in CD-like rats, compared to CD-like rats with the regular pellet diet. In conclusion, EEN treatment increases the diversity of gut microbiota and the composition of certain beneficial bacteria. These effects may contribute to the reduced inflammation by EEN in the rat model of CD-like colitis.


Assuntos
Colite , Doença de Crohn , Microbioma Gastrointestinal , Ratos , Animais , Doença de Crohn/microbiologia , Nutrição Enteral , RNA Ribossômico 16S/genética , Interleucina-17 , Interferon gama , Colite/induzido quimicamente , Colite/terapia , Bactérias , Inflamação/terapia , Indução de Remissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...